Skip to main content

Advertisement

Log in

Commentary on “The Anthropogenic Greenhouse Era Began Thousands of Years Ago”

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Bill Ruddiman (Climatic Change, 61, 261–293, 2003) recently suggested that early civilisations could have saved us from an ice age because land management over substantial areas caused an increase in atmospheric CO2 concentration. Ruddiman suggests a decreasing “natural course” of the Holocene greenhouse gases concentrations and sea-level by referring to analogous situations in the past, namely the last three interglacials. An examination of marine isotopic stage 11 would perhaps make Ruddiman’s argument even more thought-challenging. Yet, the hypothesis of a natural lowering of CO2 during the Holocene contradicts recent numerical simulations of the Earth carbon cycle during this period. We think that the only way to resolve this conflict is to properly assimilate the palæoclimate information in numerical climate models. As a general rule, models are insufficiently tested with respect to the wide range of climate situations that succeeded during the Pleistocene. In this comment, we present three definitions of palæoclimate information assimilation with relevant examples. We also present original results with the Louvain-la-Neuve climate-ice sheet model suggesting that if, indeed, the Holocene atmospheric CO2 increase is anthropogenic, a late Holocene glacial inception is plausible, but not certain, depending on the exact time evolution of the atmospheric CO2 concentration during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelheur, X., Shackleton, N. J. and Lancelot, Y.: 1994, ‘The astronomical theory of climate and the ice age of the Bruhnes-Matuyama magnetic reversal’, Earth Planet. Sci. Lett. 126, 91–108.

    Article  Google Scholar 

  • Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.

    Article  Google Scholar 

  • Berger, A.: 1979, ‘Insolation signatures of Quaternary climatic changes’, Il Nuovo Cimento 2C, 63–87.

    Google Scholar 

  • Berger, A., Li, X. S., and Loutre, M. F.: 1999, ‘Modelling northern hemisphere ice volume over the last 3 Ma’, Quat. Sci. Rev. 18, 1–11.

    Article  Google Scholar 

  • Berger, A., Loutre, M. F., and Gallée, H.: 1998, ‘Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky’, Clim. Dyn. 14, 615–629.

    Article  Google Scholar 

  • Bigelow, N., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J., and Smith, B.: 2003, ‘Climate change and Arctic ecosystems: 1. vegetation changes north of 55^ N between the last glacial maximum, mid-Holocene, and present’, J. Geophys. Res. 108, 8170, doi:10.1029/2002JD002558.

    Article  Google Scholar 

  • Brovkin, V., Bendtsen, J., Claussen, M., Kubatzki, C., Petoukhov, V., and Andeev, A.: 2002, ‘Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model’, Global Biogeochem. Cycles 16, 1139, doi:10.1029/2001GB001662.

    Article  Google Scholar 

  • Crucifix, M. and Joos, F.: 2004, Carbon isotopes in the glacial ocean: A model study, Scientific Report 1/2004, Institut d’Astronomie et de Géophysique G. Lemaî tre, Université catholique de Louvain.

  • Droxler, A. W., Poore, R. Z., and Burckle, L. H.: 2003, ‘Introduction’, in Droxler, A. W. Poore, R. Z., and Burckle, L. H. (eds.), Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Volume 137 of AGU Monograph Series, American Geophysical Union.

  • Duplessy, J.-C., Shackelton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: 1988, ‘Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation’, Paleoceanogr. 3, 343–360.

    Google Scholar 

  • EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core’, Nature 429, 623–628.

    Google Scholar 

  • Gallée, H., van Ypersele, J. P., Fichefet, T., Tricot, C., and Berger, A.: 1991, ‘Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part I: The climate model’, J. Geophys. Res. 96, 13, 139–13, 161.

    Google Scholar 

  • Giraud, X., Bertrand, P., Garcon, V., and Dadou, I.: 2003, ‘Interpretation of the nitrogen isotopic signal variations in the Mauritanian upwelling with a 2d physical-biogeochemical model’, Global Biogeochem. Cycles 17, 10.1029/2002GB001951.

  • Hargreaves, J. C. and Annan, J. D.: 2002, ‘Assimilation of paleo-data in a simple Earth system model’, Clim. Dyn. 19, 371–381.

    Article  Google Scholar 

  • Harrison, S. P., Braconnot, P., Joussaume, S., Hewitt, C. D., and Stouffer, R. J.: 2002, ‘Comparison of palæoclimate simulations enhances confidence in models’, EOS, Trans. Am. Geophys. Union 83, 447–447.

    Google Scholar 

  • Hays, J., Imbrie, J., and Shackleton, N.: 1976, ‘Variations in the earth’s orbit: Pacemaker of ice ages’, Science 194, 1121–1132.

    Google Scholar 

  • Indermühle, A., Stocker, T. F., Fisher, H., Smith, H., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: 1999, ‘Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica’, Nature 398, 121–125.

    Article  CAS  Google Scholar 

  • Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J.: 2004, ‘Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum’, Global Biogeochem. Cycles 18, doi:10.1029/2003GB002156.

    Google Scholar 

  • Jouzel, J., Barkov, N., Barnola, J., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V., Lorius, C., Petit, J., Raynaud, D., Raisbeek, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: 1993, ‘Vostok ice cores : Extending the climatic records over the penultimate glacial period’, Nature 364, 407–412.

    Article  Google Scholar 

  • Kageyama, M., Valdes, P. J., Ramstein, G., Hewitt, C., and Wyputta, U.: 1999, ‘Northern hemisphere storm-tracks in present day and last glacial maximum climate simulations: A comparison of the european PMIP models’, J. Climate 12, 742–760.

    Article  Google Scholar 

  • Kondratjeva, K. A., Khrutzky, S. F., and Romanovsky, N. N.: 1993, ‘Changes in the extent of permafrost during the Late Quaternary period in the territory of the former Soviet Union’, Permafrost and Periglacial Processes 6, 3–14.

    Google Scholar 

  • Loutre, M. F.: 2003, ‘Clues from MIS11 to predict the future climate. A modelling point of view’, Earth Planet. Sci. Lett. 212, 213–234, DOI: 10.1016/S0012–821X(03)00235–8.

    Article  CAS  Google Scholar 

  • Loutre, M. F. and Berger, A.: 2003, ‘Marine Isotope Stage 11 as an analogue for the present interglacial’, Glob. Plan. Change 36, 209–217.

    Article  Google Scholar 

  • Milankovitch, M.: 1941, Canon of insolation and the ice-age problem, Narodna biblioteka Srbije, Beograd.

    Google Scholar 

  • Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 1999, ‘Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica’, Nature 399, 429–436.

    Article  CAS  Google Scholar 

  • Renssen, H., Goosse, H., and Fichefet, T.: 2003, ‘Modeling the effect of freshwater pulses on the early holocene climate: The influence of high-frequency climate variability’, Paleoceanogr. 17, 10.1029/2001PA000649.

  • Renssen, H. and Osborn, T.: 2003, ‘Investigating Holocene climate variability: Data-model comparison’, Pages News 11, 32–33.

    Google Scholar 

  • Renssen, H. and Vandenberghe, J.: 2003, ‘Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation’, Quat. Sci. Rev. 22, 209–233.

    Article  Google Scholar 

  • Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanogr. 18, Art. No. 1083.

  • Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.

    Article  CAS  Google Scholar 

  • Saltzman, B. and Maasch, K. A.: 1990, ‘A first-order global model of late Cenozoic climate’, Trans. R. Soc. Edinburgh Earth Sci. 81, 315–325.

    Google Scholar 

  • Sarnthein, M., Gersonde, R., Niebler, S., Pflaumann, U., Spielhagen, R., Thiede, J., Wefer, G., and Weinelt, M.: 2003, ‘Overview of Glacial Atlantic Ocean Mapping’, Paleoceanogr. 18, Art. No. 1030.

  • Thorne, P., Parker, D. E., Cristy, J. R., and Mears, C. A.: 2004, submitted to Bull. Am. Met. Soc..

  • Vettoretti, G. and Peltier, W. R.: 2003a, ‘Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias’, J. Clim. 16, 889–911.

    Article  Google Scholar 

  • Vettoretti, G. and Peltier, W. R. 2003b, ‘Sensitivity of glacial inception to orbital and greenhouse gas climate forcing’, Quat. Sci. Rev. 23, 499–519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Crucifix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crucifix, M., Loutre, MF. & Berger, A. Commentary on “The Anthropogenic Greenhouse Era Began Thousands of Years Ago”. Climatic Change 69, 13–426 (2005). https://doi.org/10.1007/s10584-005-7278-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-7278-0

Keywords

Navigation