Skip to main content

Advertisement

Log in

Did Humankind Prevent a Holocene Glaciation?

Comment on Ruddiman’s Hypothesis of a Pre-Historic Anthropocene

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Recently, W.F. Ruddiman (2003, Climatic Change, Vol. 61, pp. 261–293) suggested that the anthropocene, the geological epoch of significant anthropospheric interference with the natural Earth system, has started much earlier than previously thought (P. I. Crutzen and E. F. Stoermer, 2000, IGBP Newsletter, Vol. 429, pp. 623–628). Ruddiman proposed that due to human land use, atmospheric concentrations of CO2 and CH4 began to deviate from their natural declining trends some 8000 and 5000 years ago, respectively. Furthermore, Ruddiman concluded that greenhouse gas concentrations grew anomalously thereby preventing natural large-scale glaciation of northern North America that should have occurred some 4000–5000 years ago without human interference. Here we would like to comment on (a) natural changes in atmospheric CO2 concentration during the Holocene and (b) on the possibility of a Holocene glacial inception. We substantiate our comments by modelling results which suggest that the last three interglacials are not a proper analogue for Holocene climate variations. In particular, we show that our model does not yield a glacial inception during the last several thousand years even if a declining trend in atmospheric CO2 was assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: 1987, ‘Vostok ice core provides 160,000-year record of atmospheric CO2’, Nature 329, 408–414.

    Article  CAS  Google Scholar 

  • Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic change,’ J. Atmos. Sci. 35, 2362–2367.

    Article  Google Scholar 

  • Berger, A., Loutre, M. F., and Tricot, Ch.: 1993, ‘Insolation and Earth’s orbital periods’, J. Geophys. Res. 98(D6), 10341–10362.

    Google Scholar 

  • Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of boreal forest vegetation on global climate’, Nature 359, 716–718.

    Article  Google Scholar 

  • Broecker, W. S., Clark, E., McCorkle, D. C., Peng, T.-H., Hajdas, I., and Bonani, G.: 1999, ‘Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene,’ Paleooceanography 14, 744–752.

    Article  Google Scholar 

  • Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: 2002, ‘Carbon cycle, vegetation and climate dynamics in the holocene: Experiments with the CLIMBER-2 Model’, Global Biogeochem. Cycl. 16(4), 1139; doi:10.1029/2001GB001662.

    Google Scholar 

  • Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: 2002, ‘Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model,’ Geophys. Rev. Lett. 29(24), 2216; doi:10.1029/2002GL016078.

    Google Scholar 

  • Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: 2004, ‘Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system,’ Climate Dyn. (in press).

  • Claussen, M.: 1997, ‘Modelling biogeophysical feedback in the African and Indian Monsoon region,’ Climate Dyn. 13, 247–257.

    Article  Google Scholar 

  • Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., Petoukov, V., and Rahmstorf, S.: 1999, ‘A new model for climate system analysis,’ Environ. Model. Assess. 4, 209–216.

    Article  Google Scholar 

  • Claussen, M., Brovkin, V., Petoukhov, V., and Ganopolski, A.: 2001, ‘Biogeophysical versus biogeochemical feedbacks of large-scale land-cover change,’ Geophys. Rev. Lett. 26(6), 1011– 1014.

    Article  Google Scholar 

  • Crutzen, P. I. and Stoermer, E. F.: 2000, ‘The Anthropocene’, IGBP Newsletter 41, 12.

    Google Scholar 

  • EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core,’ Nature 429, 623–628.

    Google Scholar 

  • Falkowski, P., Scholes, P. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W.: 2000, ‘The global carbon cycle: A test of our knowledge of Earth as a system,’ Science 290, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Foley, J.: 1994, ‘The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene,’ Global Biogeochem. Cycl. 8, 505–525.

    Article  CAS  Google Scholar 

  • Gajewski, K., Viau, A., Sawada, M., Atkinson, D., and Wilson, S.: 2001, ‘Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years,’ Global Biogeochem. Cycl. 15, 297–310.

    Article  CAS  Google Scholar 

  • Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: 1998, ‘The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene,’ Science 280, 1916–1919.

    Article  CAS  PubMed  Google Scholar 

  • Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., Eliseev, A., and Kubatzki, C., 2001: ‘CLIMBER-2: A climate system model of intermediate complexity. Part II: Model sensitivity’, Climate Dyn. 17, 735–751.

    Article  Google Scholar 

  • Greve, R.: 1997, ‘A continuum-mechanical formulation for shallow polythermal ice sheets’, Phil. Trans. R. Soc. Lond. A 355, 921–974

    Google Scholar 

  • Harrison, S. P., Jolly, D., Laarif, F., Abe-Ouchi, A., Dong, B., Herterich, K., Hewitt, C., Joussaume, S., Kutzbach, J. E., Mitchell, J., de Noblet, N., and Valdes, P.: 1998, ‘Intercomparison of simulated global vegetation distributions in response to 6 Kyr BP orbital forcing’, J. Climate 11, 2721.

    Article  Google Scholar 

  • Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: 1999, ‘Holocene carbon cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica’, Nature 398, 121–126.

    Article  CAS  Google Scholar 

  • Joos, F., Gerber, S., and Prentice, I. C.: 2004, ‘Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum’, Global Biogeochem. Cycl. 18(2), GB2002.

    Article  Google Scholar 

  • Kleypas, J. A.: 1997, ‘Modeled estimates of global reef habitat and carbonate production since the last glacial maximum’, Paleoceanography 12, 533–545.

    Article  Google Scholar 

  • Loutre, M. F. and Berger, A.: 2000, ‘Future climatic changes: Are we entering an exceptionally long interglacial?’, Climatic Change 46, 61–90.

    Article  Google Scholar 

  • Milliman, J. D.: 1993, ‘Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state’, Global Biogeochem. Cycl. 7, 927–957.

    CAS  Google Scholar 

  • Paillard, D.: 1998, ‘The timing of Pleistocene glaciations from a simple multiple-state climate model’, Nature 391, 378–381.

    Article  Google Scholar 

  • Paillard, D.: 2001, ‘Glacial cycles: Towards a new paradigm’, Rev. Geophys. 39(3), 325–346.

    Article  CAS  Google Scholar 

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. -M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, B., and Stievenard, M.: 1999, ‘Climate and atmospheric history of the past 420,000 years from the Vostol ice core, Antarctica’, Nature 399, 429–436.

    Article  CAS  Google Scholar 

  • Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: 2000, ‘CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate’, Climate Dyn. 16(1), 1–17.

    Google Scholar 

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C. I. (eds.): 2001, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 881 pp.

  • Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J. O.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanography 18, 1083.

    Article  Google Scholar 

  • Ruddiman, W. F.: 2003, ‘The anthropocene greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.

    Article  CAS  Google Scholar 

  • Stirling, C. H., Esat, T. M., Lambeck, K., and McCulloch, M. T.: 1998, ‘Timing and duration of the last Interglacial: Evidence for a restricted interval of widespread coral reef growth,’ Earth Planet. Sci. Lett. 135, 115–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claussen, M., Brovkin, V., Calov, R. et al. Did Humankind Prevent a Holocene Glaciation?. Climatic Change 69, 409–417 (2005). https://doi.org/10.1007/s10584-005-7276-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-7276-2

Keywords

Navigation